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Homologous genes originate from a common ancestor through vertical inheritance, duplication, or horizontal gene trans-
fer. Entire homolog families spawned by a single ancestral gene can be identified across multiple genomes based on
protein sequence similarity. The sequences, however, do not always reveal conclusively the history of large families.
To study the evolution of complete gene repertoires, we propose here a mathematical framework that does not rely on
resolved gene family histories. We show that so-called phylogenetic profiles, formed by family sizes across multiple
genomes, are sufficient to infer principal evolutionary trends. The main novelty in our approach is an efficient algorithm
to compute the likelihood of a phylogenetic profile in a model of birth-and-death processes acting on a phylogeny.

We examine known gene families in 28 archaeal genomes using a probabilistic model that involves lineage- and
family-specific components of gene acquisition, duplication, and loss. The model enables us to consider all possible
histories when inferring statistics about archaeal evolution. According to our reconstruction, most lineages are character-
ized by a net loss of gene families. Major increases in gene repertoire have occurred only a few times. Our reconstruction
underlines the importance of persistent streamlining processes in shaping genome composition in Archaea. It also sug-
gests that early archaeal genomes were as complex as typical modern ones, and even show signs, in the case of the
methanogenic ancestor, of an extremely large gene repertoire.

Introduction

The evolution of homologous gene families, that is,
genes of common ancestry, is enmeshed within species his-
tories in a complex manner (Koonin 2005). Concomitantly
with the diversification of organismal lineages, gene fam-
ilies expand by duplications, individual genes get elimi-
nated, and new genes arrive by lateral transfer. It is now
clear that de novo gene formation and vertical processes
(Henikoff et al. 1997; Snel et al. 2002), such as du-
plication and loss, act in concert with horizontal gene
transfer (Boucher et al. 2003; Gogarten and Townsend
2005).

Gene families are identified in current practice by
pairwise sequence comparisons, coupled with the cluster-
ing of postulated homolog pairs (Tatusov et al. 1997;
Alexeyenko et al. 2006) The phylogenetic profile of a gene
family comprises the family size across a set of organisms,
that is, the number of homologs within the same family
in each genome. Such profiles are extremely informative
even without taking the gene sequences into account: pro-
file data sets have been used to construct organismal phy-
logenies (Fitz-Gibbon and House 1999; Snel et al. 1999;
Tekaia et al. 1999) and to infer ancestral gene content
(Mirkin et al. 2003; Iwasaki and Takagi 2007); similar
and complementary profiles hint at functional associations
(Tatusov et al. 1997; Pellegrini et al. 1999). Considering
various evolutionary processes in a mathematical model
of gene family evolution is challenging. One main ele-
ment that distinguishes the present study from past work
is the elaboration of a likelihood framework for phyloge-
netic profiles that simultaneously accounts for gene dupli-
cation, loss, and acquisition. In particular, we describe an
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algorithm for the exact computation of the likelihood in a
phylogenetic gain –loss–duplication model.

The present study uses a gain–loss–duplication model
to address gene content evolution in Archaea. Relying on a
complete set of known homolog families in 28 sequenced
genomes, we inferred lineage- and family-specific statis-
tics. In a precursory step, we constructed a plausible phy-
logeny using 88 universally conserved proteins, which we
believe is a noteworthy result on its own, as the phy-
logeny resolves some problematic euryarchaeal branch-
ing orders (involving Thermoplasmatales, Methanopyrus,
and Methanobacteriales) confidently. Gene loss emerges
in our analysis as the dominant force that has shaped
archaeal genomes throughout their history. Apparently,
genome streamlining has been an ongoing process in all
lineages with a fairly constant intensity, apart from dra-
matic genome compactions in endosymbiotic Archaea. Our
reconstruction suggests that early Archaea had a compara-
ble genomic complexity to today’s organisms. In particular,
the euryarchaeal ancestor of two classes of methanogens
had a very large genome, resulting from one of the rare up-
surges in gene content, similarly to some modern lineages
of Methanosarcina and Halobacteria.

Methods
Phylogenetic Profiles in Archaea

Phylogenetic profiles, sequences, and functional an-
notations were downloaded from the arCOG database of
orthologous gene clusters in Archaea (Makarova et al.
2007) at ftp://ftp.ncbi.nih.gov/pub/wolf/
COGs/arCOG. The profiles were amended with data on
lineage-specific singletons and inparalog families that have
no archaeal homologs outside of one genome (Wolf Y, per-
sonal communication), which was produced in the process
of compiling the arCOG database.

The following organisms are included in the study:
Archæoglobus fulgidus (Arcfu), Haloarcula marismortui
ATCC 43049 (Halma), Halobacterium sp. strain
NRC-1 (Halsp), Methanosarcina acetivorans (Metac),
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Methanococcoides burtonii DSM 6242 (Metbu),
Methanoculleus marisnigri JR1 (Metcu), Methanospir-
illum hungatei JF-1 (Methu), Methanocaldococcus
jannaschii (Metja), Methanopyrus kandleri (Metka),
Methanosarcina mazei (Metma), Methanococcus mari-
paludis S2 (Metmp), Methanosphaera stadtmanæ (Metst),
Methanothermobacter thermoautotrophicus (Metth),
Nanoarchæum equitans (Naneq), Picrophilus torridus
DSM 9790 (Picto), Pyrococcus abyssi (Pyrab), Pyrococcus
furiosus (Pyrfu), Thermoplasma acidophilum (Theac),
Thermococcus kodakaraensis KOD1 (Theko), Thermo-
plasma volcanium (Thevo), Æropyrum pernix (Aerpe),
Caldivirga maquilingensis IC-167 (Calma), Cenarchæum
symbiosum (Censy), Hyperthermus butylicus (Hypbu),
Pyrobaculum ærophilum (Pyrae), Sulfolobus solfataricus
(Sulso); Sulfolobus acidocaldarius DSM 639 (Sulac),
Thermofilum pendens Hrk 5 (Thepe) with the last eight
classified as crenarchaeota. The abbreviations are those
used by Makarova et al. (2007) and the arCOG database.

Reconstruction of Archaeal Phylogeny

The phylogeny was constructed using concatenated
multiple alignments of selected orthologous protein se-
quences. The sequences were chosen from the arCOG
database based on phylogenetic profiles: we selected all
arCOG groups where every studied genome contained ex-
actly one homolog. There are 88 such groups (see Supple-
mental Material for sequences), and 46 of those correspond
to ribosomal proteins (r-proteins). Alignments were done
using the program Muscle (Edgar 2004). Phylogenies were
built by likelihood maximization using PhyML (Guindon
and Gascuel 2003), with the Jones–Taylor–Thornton sub-
stitution model and eight discrete gamma categories and
invariant sites. The expected number of substitutions per
amino acid site was computed on each edge for the
r-proteins in the JTT+I+Γ 8 model by PhyML. Bootstrap
support values for the branches were computed by PhyML,
using 500 replicates.

Inference of Gene Content Evolution

We maximized the likelihood (see below for the like-
lihood computation) of the data set using a gain–loss–
duplication model with a Poisson distribution at the root
and four discrete gamma categories capturing rate vari-
ation across families, for edge length t f and duplica-
tion λ f each. For a given set of model parameters (three
parameters—t̂eκ̂e, t̂eµ̂e, t̂eλ̂e—per edge, one for the root’s
Poisson parameter Γ and two gamma shape parameters
for rate variation), the likelihood of each family was com-
puted using (1) with the described methods of manip-
ulating rate variation and correcting for absent profiles.
The data set’s likelihood (i.e., the product of family like-
lihoods) was then maximized numerically as a function
of the model parameters, using custom-made software
implementing the Broyden– Fletcher–Goldfarb–Shanno
conjugate gradient method and Brent’s one-dimensional
optimization method (Press et al. 1997). Family sizes and
lineage-specific events (gains,losses,expansions, and con-
tractions) were computed using posterior probabilities in
the optimized gain–loss–duplication model.

Phylogenetic Birth-and-Death Model

A phylogenetic birth-and-death model formalizes the
evolution of an organism-specific census variable along a
rooted phylogeny T . We consider only binary phylogenies
here; the full set of methods applicable to multifurcating
phylogenies is described in the Supplementary Material.
The model specifies edge lengths, as well as birth-and-
death processes (Ross 1996; Kendall 1949) acting on the
edges. Populations of identical individuals evolve along
the tree from the root toward the leaves by Galton–
Watson processes. At nonleaf nodes of the tree, popula-
tions are instantaneously copied to evolve independently
along the adjoining descendant edges. Let the random
variable ξ (x) ∈ {0,1,2, . . .} denote the population count
at every node x ∈ V (T ). Every edge xy is characterized
by a loss rate µxy, a duplication rate λxy, and a gain
rate κxy. If (X(t) : t � 0) is a linear birth-and-death process
(Kendall 1949; Takács 1962) with these rate parameters,

then P
{

ξ (y) = m
∣∣∣ξ (x) = n

}
= P
{

X(txy) = m
∣∣∣X(0) = n

}
,

where txy > 0 is the edge length, which defines the
time interval during which the birth-and-death process
runs. The joint distribution of (ξ (x) : x ∈ V (T )) is de-
termined by the phylogeny, the edge lengths and rates,
along with the distribution at the root ρ , denoted as γ(n) =
P{ξ (ρ) = n}.

It is assumed that one can observe the population
counts at the terminal nodes (i.e., leaves) but not at the in-
ner nodes of the phylogeny. As individuals are considered
identical, we are also ignorant of the ancestral relationships
between individuals within and across populations. The
population counts at the leaves form a phylogenetic pro-
file, which is formally a function Φ : L (T ) �→ {0,1,2, . . .},
where L (T ) ⊂ V (T ) denotes the set of leaf nodes. Our
central problem is to compute the likelihood of a pro-
file, that is, the probability of the observed counts for
fixed model parameters. Define the notation Φ(L ′) =
(Φ(x) : x∈L ′) for the partial profile within a subset L ′ ⊆
L (T ). Similarly, let ξ (L ′) =

(
ξ (x) : x ∈ L ′) denote

the vector-valued random variable composed of individual
population counts. The likelihood of Φ is the probability

L = P
{

ξ
(
L (T )

)
= Φ
}

. Let Tx denote the subtree of T

rooted at node x. Define the survival count range Mx for
every node x as Mx = ∑y∈L (Tx)Φ(y). Clearly, the ranges
can be calculated easily in a postorder traversal.

For our discussion, we borrow standard terminology
applied to homologous genes (Sonnhammer and Koonin
2002). For every edge xy, the population of node y can be
split by ancestry at node x: inparalog groups are formed by
the progenies of each individual at x and a xenolog group is
formed by the individuals whose ancestor immigrated into
the population. When ξ (x) = n on the edge xy, then ξ (y) =
η +∑n

i=1 ζi, where η is the xenolog group size, and ζi are
the independent and identically distributed inparalog group
sizes. The distribution of xenolog and inparalog group sizes
is the well-characterized transient distribution of the ap-
propriate linear birth-and-death processes (Kendall 1949;
Karlin and McGregor 1958; Takács 1962; see Supplemen-
tal Material). Namely, each ζi has a shifted geometric
distribution, and for κ > 0, η has a negative binomial
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or Poisson distribution. The distributions’ parameters
are known functions of the edge length txy and rates
κxy,λxy,µxy.

Surviving Lineages

A key factor in inferring the likelihood formulas is the
probability that a given individual at a tree node x has no
descendants at the leaves within the subtree rooted at x.
The corresponding extinction probability is denoted by Dx,
which can be computed in a postorder traversal (Csűrös
and Miklós 2006). An individual at node x is referred to as
surviving if it has at least one progeny at the leaves de-
scending from x. Let Ξ(x) denote the number of surviv-
ing individuals at each node x. The number of surviving
xenologs and inparalogs follow the same class of distri-
butions as the total number of xenologs and inparalogs
(see Supplemental Material). Consequently, if ξ (x) = n on
edge xy, then Ξ(y) = η+∑n

i=1 ζi, where η is the surviving
xenolog count with a Poisson or negative binomial distri-
bution, and ζi are surviving paralog counts, with shifted
geometric distributions. The distributions’ parameters can
be computed explicitly using the process parameters and
the extinction probabilities. In the formulas to follow, we
use the probabilities w∗y [m|n] = P{η +∑n

i=1 ζi = m;∀ζi >
0}, which can be computed by dynamic programming for
all n,m�My in O(M2

y ) time (see Supplemental Material).

Computing the Likelihood

We compute the likelihood using conditional survival
likelihoods defined as the probability of observing the par-
tial profile within Tx given the number of surviving individ-
uals Ξ(x): Lx[n] = P

{
ξ (L (Tx)) =Φ(L (Tx))

∣∣∣Ξ(x) = n
}

.

For m > Mx, Lx[m] = 0. For values m = 0,1, . . . ,Mx, the
conditional survival likelihoods can be computed recur-
sively as shown below.

If node x is a leaf, then

Lx[n] =

{
0 if n 	=Φ(x);

1 if n=Φ(x).

If x is an inner node with children x1,x2, then Lx[n] can be
expressed using Lxi [·] and auxiliary values Bi;·,· for i= 1,2
in the following manner. Auxiliary values Bi;t,s are defined
for i= 1,2 and s= 0, . . . ,Mxi as follows.

Bi;0,s =

Mxi

∑
m=0

w∗xi
[m|s]Lxi [m] {0� s�Mxi}

B2;t,Mx2
= Gx2(0)B2;t−1,Mx2

B2;t,s = B2;t−1;s+1+Gx2(0)B2;t−1,s {0� s<Mx2}
where Gxi(k) = P{ζ = k} for a surviving inparalog group
at xi. In the above equations, 0 < t � Mx1 . For all n =
0, . . . ,Mx

Lx[n] =
(
1−Dx

)−n ∑
0�t�Mx1
0�s�Mx2

t+s=n

(
n
s

)
(Dx1)

sB1;0,tB2;t,s.

The complete likelihood is computed as

L=
Mρ

∑
m=0

Lρ [m]P{Ξ(ρ) = m}.
For some parametric distributions γ , there is a closed for-
mula for P{Ξ(ρ) = m}. In particular, if γ is the station-
ary distribution for a gain –loss–duplication or a gain–loss
models, then Ξ(ρ) has a negative binomial or Poisson dis-
tribution, respectively. The likelihood for a Poisson distri-
bution at the root is

L=
Mρ

∑
m=0

Lρ [m]exp(−Γ (1−Dρ))
(Γ (1−Dρ))

m

m!
(1)

where Γ is the mean family size at the root.
The likelihood formula (1) is corrected to account for

the fact that the data set does not contain all-absent pro-
files with Φ(x) = 0 for all leaves x, in a manner analogous
to Felsenstein (1992).

Family-specific rate variation is considered by com-
puting the likelihood values for each discrete rate cate-
gory c characterized by factors (tc,κc,µc,λc). The factors
in our analysis are either constant 1, or correspond to
the expected values within the four quartiles of a gamma
distribution with mean 1.

Results and Discussion
Computational Analysis of Phylogenetic Profiles

Birth-and-death processes are commonly used to
model a population of identical individuals (Kendall 1949;
Karlin and McGregor 1958) and waiting queues (Takács
1962). Their use in modeling gene family evolution is jus-
tified by the fact that losses and duplications seem to occur
independently between the members of multigene fami-
lies (Nei and Rooney 2005). The most general process we
consider is a gain–loss–duplication process that is charac-
terized by the rates of gain κ , loss µ , and duplication λ :
a population of size n grows by a rate of (λn+ κ) and
decreases by a rate of µn. In our context, the population
comprises homologs of a given family in the genome. Gene
acquisition occurs with a rate of κ , combining various
means such as innovation and lateral transfer. We model
gene family evolution in a phylogenetic setting by associ-
ating gain–loss–duplication processes with the branches of
a phylogenetic tree. The corresponding phylogenetic birth-
and-death model defines a probabilistic framework for the
evolution of gene family size. The observed family sizes at
the terminal nodes form a phylogenetic profile. In princi-
ple, a phylogenetic birth-and-death model suits likelihood-
based inference since it is a probabilistic graphical model
(Jordan 2004) with a tree structure. The mathematical dif-
ficulties stem from the fact that the state space of the pro-
cesses (i.e., family size) is infinitely large. Consequently,
routine computational techniques used to analyze molecu-
lar sequence evolution Felsenstein 1981) are not applica-
ble. Previously proposed likelihood methods (Hahn et al.
2005; Spencer et al. 2006; Iwasaki and Takagi 2007) have
sidestepped the infinity problem by using approximative
calculations with bounds on maximal family size.

We have introduced (Csűrös and Miklós 2006) a pro-
cedure for computing the likelihood in a restricted gain–
loss–duplication model (assuming 0 < κ and 0 < λ < µ),
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FIG. 1.—Consensus evolutionary tree of Archaea in the study. The consensus is based on maximum likelihood trees for concatenated alignments of
ribosomal and unique conserved proteins. Branch lengths are set by maximum likelihood for the r-proteins. Recognized archaeal orders are highlighted.
The boxed triples on the left show the percentage of bootstrap samples supporting the particular edges in three data sets (from 500 replicates for each
set): r-proteins, uc-proteins, and uc-proteins without C. symbiosum (Censy) and N. equitans (Naneq). All other edges have > 97% bootstrap support
in all data sets. Numbers next to the terminal taxa denote genome size in million base pairs.

without imposing artificial size bounds. The weakness of
that procedure is potential numerical instability, due to the
use of alternating sums in the formulas. We found practical
cases (such as the archaeal gene content study we report be-
low), where the numerical instability led to serious errors.
The novel procedure presented here is numerically stable,
as well as computationally efficient. It applies to arbitrary
gain–loss–duplication models, including degenerate cases
such as the one of Hahn et al. (2005) with λ = µ and κ = 0.
The algorithm takes O(M2n) time to complete for a phylo-
genetic profile over n species and M total number of genes
(see Supplemental Material).

Gene Content Evolution in Archaea

Archaea constitute one of the three main domains
of cellular life, and are notable for a spectacular di-
versity of adaptive strategies to extreme environments
(Garrett and Klenk 2006). We examined gene content evo-
lution in Archaea. For the purposes of the study, we have
selected 28 completely sequenced genomes covering all
major physiological and metabolic groups recognized in

cultured Archaea: thermophiles, halophiles, acidophiles,
nitrifiers, and methanogens (Valentine 2007). Homolog
gene families were extracted from the arCOG (archaeal
clusters of orthologous groups) database (Makarova et al.
2007), and combined with groupings of genes that have no
archaeal homologs outside of single genomes. The com-
plete data set consists of 14,216 families, of which 7,461
are among the arCOGs.

Phylogenetic Relationships

Archaeal phylogenetic relationships have been re-
solved to an increasing degree of confidence (Forterre
et al. 2006) with the aid of accumulating sequence data.
Figure 1 shows our consensual phylogeny based on max-
imum likelihood trees for concatenated alignments of 46
r-proteins and 88 unique conserved proteins (uc-proteins),
which are precisely those that have exactly one homolog in
each sampled genome. Congruent phylogenies were pro-
posed before (Forterre et al. 2006; Gribaldo and Brochier-
Armanet 2006), based on complete phylogenomics
evidence. In our study, r-proteins and uc-proteins show
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solid support for most recognized phylogenetic relation-
ships but provide contradictory signals for the placement
of some euryarchaeal groups. Notably, both sequence data
sets support the basal position of N. equitans, which
was originally thought to be a specimen of a separate
group from Euryarchaeota and Crenarchaeota (Waters
et al., 2003), but is more likely an early-branching eur-
yarchaeal organism (Makarova and Koonin 2005; Forterre
et al. 2006). The data also support the early-branching
position of nonthermophilic crenarchaea represented by
C. symbiosum. In fact, nonthermophilic crenarchaea may
constitute a separate phylum from Euryarchaota and Cre-
narchaeota, tentatively named Thaumarchaeota (Brochier-
Armanet et al. 2008).

The observed uncertainties about euryarchaeal groups
concern the placement of Thermoplasmata, and so-called
Class I methanogens (Bapteste et al. 2005) comprising
Methanopyrales, Methanobacteriales, and Methanococ-
cales. Thermoplasmata were originally thought to be a
an early-branching lineage of Euryarchaeota (Forterre
et al. 2006), but analyses of r-proteins (Matte-Tailliez
et al. 2002) have provided strong evidence for their late-
branching position after Class I methanogens as in fig. 1.
R-proteins in our study support the late-branching of Ther-
moplasmatales (89% bootstrap value), but a maximum
likelihood tree built from uc-proteins places Thermoplas-
matales between Nanoarchaea and Thermococcales (66%
BV). It has been argued that this placement is due to long-
branch attraction Matte-Tailliez et al. 2002; Brochier et al.
2004, a frequent systematic bias of sequence evolution
models (Rodrı́guez-Ezpeleta et al. 2007). Indeed, after we
removed N. equitans and C. symbiosum from the uc-protein
data set, the late-branching position of Thermoplasmatales
regained solid support (100% BV).

The correct phylogenetic position of M. kandleri
(Metka) is one of the remaining puzzles in archaeal
evolution. The existence of close phylogenetic relation-
ships between Class I methanogens is fairly certain,
but different protein sets and taxonomic sampling give
conflicting or weak indications (Slesarev et al. 2002;
Brochier et al. 2004, 2005; Gao and Gupta 2007)
about the exact branching order among Methanopyrales,
Methanobacteriales, and Methanococcales. R-proteins in
our study give a weak support for the monophyly of
Methanococcales and Methanobacteriales at the exclusion
of Methanopyrales (49% BV) and faintly favor the para-
phyly of Class I methanogens (37% BV for the immedi-
ate split of Methanopyrales between Thermococcales and
Methanobacteriales/Methanococcales; see Supplemental
Material). Uc-proteins, however, solidly point to the mono-
phyly of Class I methanogens (> 97% BV). Interestingly,
the maximum likelihood trees built from uc-proteins do
not resolve well the relationships between Halobacteriales,
Methanosarcinales, and Methanomicrobiales (see Supple-
mental Material), but there is little reason to doubt that
r-proteins provide a genuine phylogenetic signal about the
monophyly of Class II methanogens (Bapteste et al. 2005;
Brochier-Armanet et al. 2008), uniting Methanosarcinales
and Methanomicrobiales.

We conclude that based on protein sequences, Ther-
moplasmatales constitute a late-branching euryarchaeal

FIG. 2.—Branch-specific loss rates µ̂et̂e compared with expected
numbers of substitutions (or edge length) for each branch e. Pairs of sib-
ling terminal taxa are connected by lines.

lineage, and their early-branching status is a long-branch
attraction artifact. Furthermore, the sequences provide ev-
idence of the monophyly of both Class I and Class II
methanogens.

Evolutionary Rates: Correlations Between Sequence and
Gene Content Evolution

We experimented with models of increasing complex-
ity that combine lineage- and gene-specific factors in the
gain–loss–duplication processes. Specifically, we assumed
that the process for family f on branch e is characterized by
the rates κ = κ̂eκ f , µ = µ̂eµ f , λ = λ̂eλ f , and runs for a du-
ration of t = t̂et f . Here, t̂e, κ̂e, µ̂e, λ̂e are branch-specific pro-
cess parameters, and t f ,κ f ,µ f ,λ f are family-specific rate
variation coefficients. Starting with simple models with
invariant family-specific coefficients, we introduced rate
variation in a model hierarchy with increasing complexity.
In more complex models, some coefficients were drawn
randomly from a discretized gamma distribution (Yang
1994). Different family-specific coefficients do not have
the same impact on the model fit. We found the largest im-
provement when introducing variation in edge length (t f ),
followed by duplication–rate variation (λ f ). Further varia-
tion in loss and gain rates led to insignificant improvements
in the model fit and were not assumed in the analysis.

In the absence of extraneous scaling, we set t̂e = 1
to examine the total rates of gene content change on
each edge e. We found a conspicuous correlation across
branches between the rate of sequence evolution (expected
numbers of substitutions per site for r-proteins) and the
component rates of gene content evolution: on this point,
see Figure 2 for loss, and the Supplemental Material for
duplication and gain. More precisely, the correlation holds
for the lineage-specific components of loss, duplication,
and gain rates in a decreasing order of strength (P values
of 1.1× 10−11, 8.2× 10−6, and 1.6× 10−4, respectively,
by Student’s t-test for Spearman rank order correlation
coefficient).

The apparent correlations between gene content and
sequence evolution rates imply that a steady balance has
been maintained between drift and natural selection in al-
most all lineages. Loss and duplication rates, in particular,
have similar vagaries as amino acid substitution rates and
provide thus comparable molecular clocks. We measured
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each terminal node’s depth by summing the rates along
branches from the root to the node in question. Excluding
N. equitans and C. symbiosum, the coefficient of variation
of the depth is 26% for protein sequences, 23% for gene
loss rates, and 20% for duplication rates. Depths by gene
gain rates span about a 4-fold range: for substitution, loss,
and duplication, the span is close to 2-fold.

Genes have thus been eliminated in all archaeal lin-
eages with a fairly universal constancy, apart from occa-
sional accelerations. In other words, genome degradation
processes seem to persist at a fairly common intensity in
every lineage (Mira et al. 2001). Conceivably, genome de-
cay is counterbalanced by natural selection that eliminates
deleterious mutations. The root cause of dramatically in-
creased gene loss in obligate symbionts such as N. equitans
(Makarova and Koonin 2005) may be reduced selection
(Hershberg et al. 2007; Koonin and Wolf 2008). Principles
of population genetics imply that changes in population
size alone can explain rate changes (Lynch 2006): selec-
tion power is weaker in a smaller population, which should
manifest in accelerated evolution of sequences (Ohta 1972)
and gene content.

We examined the differences between evolutionary
rates in sibling terminal taxa for signs of natural selection.
Figure 2 shows that gene loss and amino acid substitu-
tion rates differ in a concerted fashion for three pairs, that
is, for M. stadtmanæ–M. thermoautotrophicus, Halobac-
terium sp.–H. marismortuimi, and S. acidocaldarius–
S. solfataricus. In seven other pairs, loss rates are
essentially the same, even if substitution rates may dif-
fer. The agreements between substitution and gene loss
rate changes attest to common selection forces and muta-
tion processes acting on different forms of genome decay
and are predicted by population-genetic arguments (Lynch
2006).

In the lineage leading to M. stadtmanæ, a human com-
mensal (Fricke et al. 2006), all rates are simultaneously
larger when compared with its sibling lineage M. ther-
moautotrophicus, which may be attributed to a smaller
population size for the former, which has a smaller habi-
tat. Gene gain and duplication rates behave in general less
predictably: numerical differences between loss, gain, and
duplication rates on sibling lineages occur in almost all
possible sign combinations. The observed fluctuations cor-
roborate the intuition that selection pressures acting on
gain and duplication are strong and variable (Wolf et al.
2002). It is plausible that during episodes of massive adap-
tation, the selective advantages of gene acquisition may
outweigh possible negative consequences of an increased
genome, and thus drive elevated gene gains, especially if
coupled with small population sizes. In our case, unusu-
ally large gain rates are inferred on some of the deepest
branches (such as the one leading to node E1 in fig. 1 or
to the halobacterial ancestor), as well as on the terminal
branches leading to M. acetivorans (Metac), H. marismor-
tuimi (Halma) and P. ærophilum (Pyrae).

History of Archaeal Gene Census: Streamlining and Surges

We inferred a probable history of archaeal gene con-
tent using posterior probabilities for ancestral family sizes

and family size changes, computed from the phylogenetic
profiles in the fitted model. Figure 3 summarizes the results
by lineages. (See Supplemental Material for bootstrap con-
fidence intervals: the uncertainty in ancestral family counts
is estimated to be within ±19% for all nodes. We note
that alternate phylogenies for the Class I methanogens give
similar results that fall within those confidence intervals.)

Our reconstruction suggests a recurrent theme in ar-
chaeal evolution: a major physiological or metabolic in-
vention leads to a successful founding population in a new
environment, which then further diversifies by genomic
streamlining. We can see notably that fig. 3 shows only
a few branches where gains prevail over losses (i.e., at
least twice as many gains as losses): such is the case for
some deep crenarchaeal and euryarchaeal branches, and
the terminal lineages for M. acetivorans and H. maris-
mortuimi. About half of the remaining terminal lineages
and two-thirds of remaining deep lineages are dominated
by loss. Moreover, there is only one ancestral node (the
crenarchaeal ancestor) in the entire tree for which gain is
dominant in both descendant lineages.

Why would gene loss be so prevalent? We speculate
that the versatility of a large genome in such extant lineages
as M. acetivorans (Galagan et al. 2002) and H. maris-
mortuimi (Baliga et al. 2004) can be upheld for only rel-
atively short time periods. Genetic drift already leads to
the diversification of descendant lineages, which are fre-
quently isolated, given the disconnectedness of the ex-
treme environments they dwell in (Whitaker et al. 2003;
Escobar-Páramo et al. 2005). Specialization and the loss of
dispensable functions should be favorable in the descen-
dants that are typically under significant energy stress
(Valentine 2007). Genomic streamlining should also be fa-
vored by population-size effects due to the isolation (Lynch
2006), even in the case of slightly deleterious loss of
function.

After the crenarchaeal split, the main euryarchaeal
lineage has been characterized by the accumulation of new
families, culminating in a large surge on the branch leading
to node E1, where many new families appeared. The time
interval (judging by sequence divergence in fig. 1) and the
extent of gene gain is similar to what is seen with H. maris-
mortuimi (Halma) and M. acetivorans (Metac). The infer-
ence of large gains in the E1 lineage is due to the large
number of gene families shared between multiple descen-
dant lineages, and especially between the two classes of
methanogens (Slesarev et al. 2002; Bapteste et al. 2005;
Gao and Gupta 2007; Makarova et al. 2007). In fact, this
lineage may very well have been where hydrogenotrophic
methanogenesis was invented, which then underwent mod-
ifications, extensions, and degradations in subsequent lin-
eages. It was noted in previous genome-scale comparisons
(Bapteste et al. 2005; Gao and Gupta 2007) that it is likely
that euryarchaeal lineages acquired methanogenesis pre-
dominantly by vertical inheritance because the associated
pathways are fairly complex, and neither the sequences
nor the phylogenetic profiles show evidence of substantial
amounts of lateral gene transfer LGT. Figure 3 suggests
that methanogenesis appeared after the split of Thermo-
coccales in the company of more than 760 genes. Based
on extant examples of archaea with such swelled genomes
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FIG. 3.—A digest of gene content evolution in Archaea. The bar graphs plot posterior means for number of families. The chart on the left shows
the number of families with at least one homolog; the fatter part of the bar is proportional to the number of multigene families. The chart in the middle
plots the families acquired and lost on the branch leading to the indicated node. The net change is highlighted by the solid part of the bars. The chart
on the right shows how many families underwent a contraction from multigene to single-gene composition, or expanded from a single homolog to
multiple paralogs. For instance, the common ancestor of Methanococcales is inferred to have had 1723 gene families, out of which 156 were gained
after the split with Methanobacteriales. During the same time, 586 families present at the common ancestor M1 were lost, and the solid bar indicates
the net loss of 430 (=586-156) families. Among multimember families retained from M1, 68 contracted to a single homolog, and 13 single-member
families expanded. Note that scaling is the same on the left-hand side and in the middle,but different on the right-hand side.

(Galagan et al. 2002; Baliga et al. 2004), it is plausible
that the corresponding archaeal organisms were extremely
versatile.

Our inference of ancestral gene content is quite dif-
ferent from previous reconstructions based on parsimony
principles (Makarova et al. 2007; Csűrös 2008): at deep
nodes, we postulate larger genomes. Parsimonious recon-

structions (Mirkin et al. 2003; Kunin et al. 2005; Csűrös
2008) aim to minimize the number of implied loss and gain
events. As a consequence, parsimony inherently underesti-
mates the age of gene families.

A major concern in ancestral gene content reconstruc-
tion is that “patchy” profiles arise from a combination of
lineage-specific loss events and LGT. Frequent LGT imply
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smaller ancestral genome sizes (Dagan and Martin 2007).
Our reconstruction reveals the prevalence of differential
loss, but LGT events are far from uncommon. Lineage-
specific gains (“Gain column” in fig. 3) account to more
than 14% of families (“Families in the genome”) at half of
all the lineages. A probabilistic framework, such as a phy-
logenetic birth-and-death model, makes it feasible to take
all possible gene family histories into consideration in a
mathematically sound way. A case in point is the last ar-
chaeal common ancestor (LACA), where only about 1300
families are inferred to have been present with a posterior
probability of at least 90%, which is close to a parsimony-
based inference of about 1000 families (Makarova et al.
2007). Given the uncertainties of most family histories,
the exact genome composition of LACA is hard to esti-
mate, but the fractional probabilities point to a genome
with slightly more than 2000 families, which is similar
to such extant organisms as S. solfataricus. Such a large
genome size implies that LACA’s genomic complexity was
even greater than previously imagined (Makarova et al.
2007), on a par with modern, moderately sized archaeal
genomes.

Supplementary Material

Supplementary Material are available online at
Molecular Biology and Evolution (http://www.mbe.
oxfordjournals.org/).
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